Conjugacy classes and centralisers in wreath products

نویسندگان

چکیده

In analogy to the disjoint cycle decomposition in permutation groups, Ore and Specht define a of elements full monomial group exploit this describe conjugacy classes centralisers group. We generalise their results wreath products whose base need not be finite top acts faithfully on set. parameterise such explicitly. For products, our approach yields efficient algorithms for finding conjugating elements, classes, centralisers.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Geometry of Twisted Conjugacy Classes in Wreath Products

We give a geometric proof based on recent work of Eskin, Fisher and Whyte that the lamplighter group Ln has infinitely many twisted conjugacy classes for any automorphism φ only when n is divisible by 2 or 3, originally proved by Gonçalves and Wong. We determine when the wreath product G o Z has this same property for several classes of finite groups G, including symmetric groups and some nilpo...

متن کامل

Wreath Products of Permutation Classes

A permutation class which is closed under pattern involvement may be described in terms of its basis. The wreath product construction X o Y of two permutation classes X and Y is also closed, and we investigate classes Y with the property that, for any finitely based class X, the wreath product X o Y is also finitely based.

متن کامل

The Conjugacy Problem in Wreath Products and Free Metabelian Groups

1. Introduction. The conjugacy problem was formulated by Dehn in 1912 for finitely presented groups [1]. The question was whether it can be effectively determined for such a group when two elements are conjugate. This general question was answered in the negative by Novikov in 1954 [6J. But it is still of interest to determine whether the problem is solvable for particular finitely presented gr...

متن کامل

COMPUTING THE PRODUCTS OF CONJUGACY CLASSES FOR SPECIFIC FINITE GROUPS

Suppose $G$ is a finite group, $A$ and $B$ are conjugacy classes of $G$ and $eta(AB)$ denotes the number of conjugacy classes contained in $AB$. The set of all $eta(AB)$ such that $A, B$ run over conjugacy classes of $G$ is denoted by $eta(G)$.The aim of this paper is to compute $eta(G)$, $G in { D_{2n}, T_{4n}, U_{6n}, V_{8n}, SD_{8n}}$ or $G$ is a decomposable group of order $2pq$, a group of...

متن کامل

Products of Conjugacy Classes in Finite and Algebraic Simple Groups

We prove the Arad–Herzog conjecture for various families of finite simple groups — if A and B are nontrivial conjugacy classes, then AB is not a conjugacy class. We also prove that if G is a finite simple group of Lie type and A and B are nontrivial conjugacy classes, either both semisimple or both unipotent, then AB is not a conjugacy class. We also prove a strong version of the Arad–Herzog co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Symbolic Computation

سال: 2022

ISSN: ['1095-855X', '0747-7171']

DOI: https://doi.org/10.1016/j.jsc.2022.02.005